0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

A Comparison of the Rheologic Properties of an Adipose-Derived Extracellular Matrix Biomaterial, Lipoaspirate, Calcium Hydroxylapatite, and Cross-linked Hyaluronic Acid

Amit Kochhar, MD1; Iwen Wu, PhD2; Raja Mohan, MD3; Alexandra Condé-Green, MD2,4; Alexander T. Hillel, MD1,2; Patrick J. Byrne, MD1,5; Jennifer H. Elisseeff, PhD2
[+] Author Affiliations
1Department of Otolaryngology–Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
2Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
3Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
4Division of Burn Surgery, Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
5Division of Facial Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
JAMA Facial Plast Surg. 2014;16(6):405-409. doi:10.1001/jamafacial.2014.480.
Text Size: A A A
Published online

Importance  Acquired soft-tissue injury with resultant volume loss may cause significant deformity in size, shape, and body or facial contour. Current autologous fat transfer techniques have several limitations, including availability, donor site morbidity, and unpredictable rates of resorption. We present an extracellular matrix (ECM) biomaterial derived from human adipose tissue as an off-the-shelf alternative for soft-tissue volume restoration and compare clinically relevant rheologic properties.

Objectives  To determine the rheologic properties of adipose-derived ECM and to compare it with lipoaspirate, calcium hydroxylapatite, and cross-linked hyaluronic acid.

Design, Setting, and Participants  Adipose-derived ECM (n = 4), lipoaspirate acquired from aesthetic liposuction (n = 4), calcium hydroxylapatite (n = 4), and cross-linked hyaluronic acid (n = 4) were obtained to determine the viscoelastic properties.

Interventions  Dynamic frequency oscillation measurements were conducted using a rheometer (ARES-G2; TA Instruments). All injections were performed using a 20-gauge needle, and all measurements were performed using serrated 25-mm parallel-plate geometry with a 1.0-mm gap at 37°C.

Main Outcomes and Measures  Oscillation measurements for storage modulus, a measure of the elastic properties, and complex viscosity were obtained over an angular frequency range of 0.01 to 100 rad/s.

Results  At 1 Hz, adipose-derived ECM had a mean (SD) storage modulus of 713.2 (42.9) Pa and a mean (SD) complex viscosity of 115.8 (6.9) Pa/s. Lipoaspirate had a mean (SD) storage modulus of 382.1 (66.8) Pa and a mean (SD) complex viscosity of 61.5 (10.7) Pa/s. Calcium hydroxylapatite had a mean (SD) storage modulus of 1122.1 (67.1) Pa and a mean (SD) complex viscosity of 207.2 (11.6) Pa/s. Cross-linked hyaluronic acid had a mean (SD) storage modulus of 63.9 (3.0) Pa and a mean (SD) complex viscosity of 10.9 (0.5) Pa/s.

Conclusions and Relevance  Of the 4 materials tested, calcium hydroxylapatite has the highest mean storage modulus and mean complex viscosity, and hyaluronic acid has the lowest. The viscoelastic properties of adipose-derived ECM are most similar to those of lipoaspirate, suggesting that it may be an ideal candidate for soft-tissue reconstruction.

Level of Evidence  NA.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure 1.
Parallel-Plate Rheometer

Shown is the filling of the parallel-plate measuring system.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Mean Storage Modulus

Shown is the mean storage modulus at 1 Hz for adipose-derived extracellular matrix (ECM), lipoaspirate, calcium hydroxylapatite (CaHA), and hyaluronic acid (HA).aDenotes P < .005.bDenotes P < .05.cDenotes P < 10−7.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Mean Complex Viscosity

Shown is the mean complex viscosity at 1 Hz for adipose-derived extracellular matrix (ECM), lipoaspirate, calcium hydroxylapatite (CaHA), and hyaluronic acid (HA).aDenotes P < .005.bDenotes P < .05.cDenotes P < 10−7.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();