Ehrlichia chaffeensis Seroprevalence Among Children in the Southeast and South-Central Regions of the United States

Gary S. Marshall, MD; Richard F. Jacobs, MD; Gordon E. Schutze, MD; Helene Paxton, MS; Steven C. Buckingham, MD; John P. DeVincenzo, MD; Mary Anne Jackson, MD; Venusto H. San Joaquin, MD; Steven M. Standaert, MD; Charles R. Woods, MD; for the Tick-Borne Infections in Children Study Group

Background: The reported annual incidence of human monocytic ehrlichiosis, which is due to infection with Ehrlichia chaffeensis, is as high as 5.5 per million in some states, but serosurveys suggest much higher infection rates in some populations.

Objective: To estimate the prevalence of E. chaffeensis infection among children aged 1 to 17 years living in the southeast and south-central United States.

Design: Cross-sectional serosurvey.

Setting: Seven academic pediatric medical centers in the southeastern and south-central United States.

Patients: Nineteen hundred ninety-nine children (approximately 300 at each center) having their blood drawn for any reason.

Main Outcome Measure: The presence of antibody at 2 different cutoff titers to E. chaffeensis, as detected by indirect immunofluorescence assay.

Results: Overall, 250 children (13%) had E. chaffeensis antibody titers of 1:80 or higher and 61 (3%) had titers of 1:160 or higher. Age-adjusted seroprevalence rates varied widely between sites. At 1:80 or higher, the highest rate was in Winston-Salem, NC (22%), and the lowest was in Louisville, Ky (2%). At 1:160 or higher, the highest rate was in Kansas City, Mo (9%), and the lowest was in Oklahoma City, Okla (<1%). In univariate analyses, no associations were found between seroprevalence at either cutoff value and sex, race, source of specimen, or residence demographics. However, age was a significant predictor of seroprevalence at both cutoff values. In multiple logistic regression analysis, study site and age remained strong predictors of seroprevalence, but living in a nonurban ZIP code was not significantly related.

Conclusion: Infection with E. chaffeensis, or related ehrlichiae, may be more common in children than previously recognized.

Arch Pediatr Adolesc Med. 2002;156:166-170
ness in adults, with14 and without15 a history of a tick bite. The occurrence of subclinical ehrlichiosis was underscored in a study16 of a golf-oriented retirement community in eastern Tennessee, which demonstrated serological evidence of prior infection in 12.5% of residents, although few reported compatible illnesses. Similarly, 4.6% of residents of a semirural subdivision in northern California had antibodies to *E chaffeensis* but no recollection of illness suggesting ehrlichiosis.17 Other studies18 estimate the prevalence of prior infection with *ehrlichiae* to be as high as 7% in selected populations.

Because Rocky Mountain spotted fever, which is transmitted by one of the same tick vectors, is more common in children than in adults,19 it seems logical that exposures to *ehrlichiae* occur in childhood. In addition, studies19,20,22 show that infection with *Rickettsia rickettsii*, the causative agent of Rocky Mountain spotted fever, is probably much more common than disease incidence reports suggest. Despite this, to our knowledge, no studies have looked specifically at the prevalence of *ehrlichia* antibodies in children living in tick-endemic regions of the country.

PATIENTS AND METHODS

POPULATION SPECIFICATION AND SAMPLING

Seven sites located in the "tick belt" of the southeastern and south-central United States participated in the study. From east to west, these sites were as follows: Winston-Salem, NC; Louisville, Ky; Nashville, Tenn; Memphis, Tenn; Little Rock, Ark; Kansas City, Mo; and Oklahoma City, Okla. Approximately 300 patients aged 1 to 17 years were studied at each site. Plasma or serum specimens were obtained from residual volumes in the site's chemistry laboratory after the appropriate clinical tests were performed. This method thus sampled children with any diagnosis having blood drawn for any reason. Because specimens were stripped of unique personal identifiers and were anonymously coded, the need to obtain informed consent was waived by each institution's human studies committee. Collections occurred between February 22, 1998, and July 24, 1998, at all sites except Oklahoma City, where collections occurred between July 21, 1999, and September 27, 1999. Patient data recorded for each specimen included the following: study site, date of birth, date of specimen collection, source of specimen (hospital admission, emergency department visit, or other outpatient visit), sex, race, and ZIP code of residence.

SEROLOGICAL TESTS

Specimens were tested in one laboratory (PanBio InDx, Inc, Baltimore, Md) for antibodies to *E chaffeensis* by indirect immunofluorescence assay (IFA). Vero cells infected with strain 91HE1721 were fixed onto glass slides containing 6-mm wells. Serum samples were diluted 1:80 in phosphate-buffered saline and reacted with antigen wells at room temperature for 30 minutes. Slides were then washed with phosphate-buffered saline, rinsed with deionized water, and air dried. Bound antibodies were detected using a fluorescein isothiocyanate–conjugated polyclonal antibody, 2 were positive for *Rickettsia typhi* (Rickettsia IFA IgG Test Kit [used according to the manufacturer's instructions]; MRL Diagnostics, Cypress, Calif). Each assay included positive and negative controls. To control for storage and handling, and to provide an assessment of signal detection, 6 control serum samples were sent to 6 of the sites for random inclusion in their sequence of specimens (control serum samples were not available for Kansas City). Two of these were positive for *E chaffeensis* antibody, 2 were positive for *Rickettsia typhi* antibody, and 2 were negative for antibodies to both organisms.

ANALYSIS

Data were stored and analyzed on a computer (Macintosh PowerBook G3; Apple Computer, Inc) running a statistical analysis program (StatView 5.0; SAS Institute Inc, Cary, NC). The 1998 Centers for Disease Control and Prevention surveillance definition of probable ehrlichiosis24 included an IFA antibody titer of 1:64 or higher (the 2000 definition relies only on cutoff values established by individual laboratories25). However, cutoff values for positive IFA titers in published seroprevalence studies18,20-22 of ehrlichiosis vary from 1:64 or higher to 1:80 or higher. Because standards for interpretation of these assays in seroepidemiologic studies do not exist, the present data were analyzed at a cutoff value of 1:80 or higher and at a more stringent cutoff value of 1:160 or higher. For analysis, age was collapsed into the following categories: 1 to 6, 7 to 12, and 13 to 17 years. Race was dichotomized into white and nonwhite. Based on 1990 census data, ZIP codes were demographically categorized as follows: (1) urban (>75% of households classified as urban [places of ≥2500 persons incorporated as cities, villages, boroughs, and towns]) or urbanized ([places and their adjacent densely settled surrounding territories [at least 1000 persons per 2.6 km2] that together have a minimum of 50,000 persons]); and (2) all others.26 Categorical associations between variables were sought in univariate analyses using the χ2 test; in all cases, expected cell frequencies were greater than 5. Site-specific seroprevalence rates were adjusted for differences in age distribution using the entire study population as the reference. Multiple logistic regression was performed using 6 variables: study site, age, source of specimen, residence, race, and sex. Variables that were highly significant in univariate analyses were entered into the model first, and for each variable, the element with the lowest seroprevalence rate was used as the reference level. Significance for all analyses was defined at an α level of .05.
RESULTS

DEMOGRAPHICS

A total of 1999 subjects (1015 male subjects) were studied, distributed as follows: Kansas City, n=194; Little Rock, n=296; Oklahoma City, n=296; Nashville, n=299; Louisville, n=300; Memphis, n=302; and Winston-Salem, n=312. The overall age distribution is given in Table 1. Sites differed significantly for the age distribution of the subjects (P<.001). For example, in Kansas City, 40% of the subjects were aged 1 to 6 years and 27% were aged 13 to 17 years. By contrast, in Winston-Salem, 18% were aged 1 to 6 years and 46% were aged 13 to 17 years. The sex proportion did not differ significantly between sites (P=.07). However, sites differed significantly in racial distribution and in the proportion of subjects living in an urban setting (P<.001 for both). Most specimens (68%) were obtained in the outpatient setting (14% at an emergency department visit and 54% from other outpatient settings); the remainder were from children admitted to the hospital. There were significant differences in the relative proportions of these sources between sites (P<.001).

SEROLOGICAL RESULTS

Of the 12 randomly included positive control serum samples for E. chaffeensis, 10 were correctly identified. All 12 R. rickettsii control serum samples and all 12 negative control serum samples were correctly identified as negative in the E. chaffeensis IFA. Figure 1 gives the distribution of E. chaffeensis titers in the study population. Overall, 250 children (13%) had titers of 1:80 or higher; of these children, only 6 also had antibody to R. rickettsii at 1:64 or higher, and none had antibody to R. typhi. Sixty-one children (3%) had ehrlichia titers of 1:160 or higher. As seen in Figure 2, age-adjusted seroprevalence rates varied widely between sites. At 1:80 or higher, the highest rate was in Winston-Salem (22%) and the lowest was in Louisville (2%). At 1:160 or higher, the highest rate was in Kansas City (9%) and the lowest was in Oklahoma City (<1%).

OTHER PREDICTORS

In contingency table analyses, no univariate associations were found between ehrlichia seroprevalence at either cutoff value and sex, race, source of specimen, or residence demographics. Age group was a significant predictor of seroprevalence at both cutoff values. At 1:80 or higher, the seroprevalence was 8% in 1- to 6-year-old subjects, 12% in 7- to 12-year-old subjects, and 18% in 13- to 17-year-old subjects (P<.001). At 1:160 or higher, the seroprevalence was 1% in 1- to 6-year-old subjects, 3% in 7- to 12-year-old subjects, and 5% in 13- to 17-year-old subjects (P<.001). Table 2 gives the results of multiple logistic regression analysis at both cutoff values. Study site remained the strongest predictor of seroprevalence. At 1:80 or higher, the odds ratios ranged from 4.2 in Memphis to 15.0 in Winston-Salem (with Louisville as the reference level), and were significant for all sites. At 1:160 or higher, the odds ratios ranged from 1.8 in Memphis to 24.5 in Kansas City (with Oklahoma City as the reference level), and were significant for Nashville, Little Rock, Winston-Salem, and Kansas City. Age remained a significant predictor of seroprevalence at both cutoff values, but only for
Tickborne infections have gained public health importance as residential growth has impinged on rural geographic areas and outdoor activities have become more popular. 27-28 *Ehrlichiosis* is considered one of these emerging zoonoses. 7 The present study shows a high prevalence of IFA antibodies reactive with *E. chaffeensis* among children living in the southeast and south-central United States. Even using a stringent cutoff value for positive IFAs, the prevalence of antibody was as high as 9% at one site. The present method does not exclude the possibility that antibodies to cross-reacting ehrlichiae or rickettsiae were included. It is also possible that this study underestimated the true prevalence of ehrlichiosis, because declining antibody titers have been observed after acute infection. 29

If such is the case, recognizing and treating mild or early cases might be important in preventing more severe manifestations of disease in some individuals. The intended sample herein was consecutive children having their blood drawn at each center. The actual sample, however, included only those children with sufficient serum available after clinical tests were performed. This may explain why the age distribution was shifted toward older subjects (Table 1); older subjects may have had more blood obtained and, thus, more was left over for this study. Because many children at all ages were included, it is unlikely this sampling bias affected the results.

The present study was not population based, and the serological methods did not differentiate incident from prevalent infection. Conceivably, some children had their blood drawn because of symptoms suggesting rickettsial infection, although 82% of the serum specimens were collected between February and May, when tickborne diseases are less common. However, because clinical data were not obtained, incident infection cannot be excluded. It is also possible that this study underestimated the true prevalence of ehrlichiosis, because declining antibody titers have been observed after acute infection. 29

Other biases may have been operative in this convenience sample. For example, children presenting to these regional centers may have been triaged from rural areas, where tick exposures are expected to be more common. On the other hand, hospital admissions might have overrepresented children with chronic conditions that limit mobility and, thus, tick exposure. Alternatively, children with long-term sequelae of ehrlichiosis (eg, neurological damage) might be overrepresented in a hospital-based sample. Emergency department visits might have overrepresented urban children, who are expected to have fewer tick exposures. The impact of these biases, which had competing directions, was minimized in the analysis. The finding of increasing seroprevalence with age was expected based on the accumulation of exposures over time, and affords internal consistency to the study. The low seroprevalence rate in Louisville was consistent with a low annual reporting rate for disease in Kentucky (0.40 cases per million). 13 The corresponding statewide reporting rates per million for other sites were 5.53 in Arkansas (Little Rock), 4.72 in North Carolina (Winston-Salem), 3.05 in

Table 2. Multiple Logistic Regression Analysis of Risk Factors for *Ehrlichia chaffeensis* Seropositivity

<table>
<thead>
<tr>
<th>Factor</th>
<th>Titer</th>
<th>≥ 1:80</th>
<th>1:160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louisville, Ky</td>
<td>1.0</td>
<td>3.6 (0.4-32.4)</td>
<td></td>
</tr>
<tr>
<td>Memphis, Tenn</td>
<td>4.2 (1.7-10.7)</td>
<td>1.8 (0.2-19.9)</td>
<td></td>
</tr>
<tr>
<td>Oklahoma City, Okla</td>
<td>4.6 (1.8-11.5)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Nashville, Tenn</td>
<td>7.2 (2.9-17.6)</td>
<td>9.6 (1.2-78.6)</td>
<td></td>
</tr>
<tr>
<td>Kansas City, Mo</td>
<td>8.9 (3.5-22.5)</td>
<td>24.5 (3.1-191.9)</td>
<td></td>
</tr>
<tr>
<td>Little Rock, Ark</td>
<td>11.8 (4.9-28.4)</td>
<td>9.6 (1.2-76.8)</td>
<td></td>
</tr>
<tr>
<td>Winston-Salem, NC</td>
<td>15.0 (6.3-35.6)</td>
<td>15.2 (2.0-117.4)</td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td>1.4 (0.9-2.1)</td>
<td>2.1 (0.8-5.5)</td>
<td></td>
</tr>
<tr>
<td>13-17</td>
<td>2.4 (1.6-3.5)</td>
<td>4.3 (1.7-10.5)</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital admission</td>
<td>1.0</td>
<td>1.3 (0.7-2.4)</td>
<td></td>
</tr>
<tr>
<td>Other outpatient visit</td>
<td>1.0 (0.7-1.4)</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Emergency department visit</td>
<td>1.2 (0.7-1.9)</td>
<td>1.6 (0.7-3.8)</td>
<td></td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonurban</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>1.4 (1.0-1.9)</td>
<td>1.9 (1.0-3.7)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>0.9 (0.7-1.3)</td>
<td>1.1 (0.6-2.0)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.0 (0.8-1.4)</td>
<td>1.2 (0.7-2.2)</td>
<td></td>
</tr>
</tbody>
</table>

Data are given as odds ratios (95% confidence intervals). For each variable, the category with the lowest seroprevalence rate was used as the reference level.

COMMENT

the 13- to 17-year-old group. The only other variable to achieve significance in logistic regression was urban residence at the 1:80 or higher cutoff value (P = .05).

E. chaffeensis infection is one of the emerging zoonoses. The presence of IFA antibodies reactive with *E. chaffeensis* is considered one of these emerging zoonoses. 7 The present study shows a high prevalence of IFA antibodies reactive with *E. chaffeensis* among children living in the southeast and south-central United States. Even using a stringent cutoff value for positive IFAs, the prevalence of antibody was as high as 9% at one site. The present method does not exclude the possibility that antibodies to cross-reacting ehrlichiae or rickettsiae were included. It is also possible that this study underestimated the true prevalence of ehrlichiosis, because declining antibody titers have been observed after acute infection. 29

Other biases may have been operative in this convenience sample. For example, children presenting to these regional centers may have been triaged from rural areas, where tick exposures are expected to be more common. On the other hand, hospital admissions might have overrepresented children with chronic conditions that limit mobility and, thus, tick exposure. Alternatively, children with long-term sequelae of ehrlichiosis (eg, neurological damage) might be overrepresented in a hospital-based sample. Emergency department visits might have overrepresented urban children, who are expected to have fewer tick exposures. The impact of these biases, which had competing directions, was minimized in the analysis. The finding of increasing seroprevalence with age was expected based on the accumulation of exposures over time, and affords internal consistency to the study. The low seroprevalence rate in Louisville was consistent with a low annual reporting rate for disease in Kentucky (0.40 cases per million). 13 The corresponding statewide reporting rates per million for other sites were 5.53 in Arkansas (Little Rock), 4.72 in North Carolina (Winston-Salem), 3.05 in

University of Louisville, Louisville, Ky: Gary S. Marshall, MD, Gordon G. Stout, BS. PanBio InDx, Inc, Baltimore, Md: Helene Paxton, MS, Joan Antony, BS. Vanderbilt University School of Medicine, Nashville, Tenn: Steven M. Standaert, MD, Michael Leonard, MD. The Johns Hopkins University School of Medicine, Baltimore: J. Stephen Dumler, MD. University of Arkansas for Medical Sciences, Little Rock: Richard F. Jacobs, MD, Gordon E. Schutte, MD. University of Tennessee Health Sciences Center, Memphis: Steven C. Buckingham, MD, John P. DeVincenzo, MD. University of Missouri, Kansas City: Mary Anne Jackson, MD. University of Oklahoma Health Sciences Center, Oklahoma City: Venusto H. San Joaquin, MD. Wake Forest University School of Medicine, Winston-Salem, NC: Charles R. Woods, MD.

©2002 American Medical Association. All rights reserved.
The reported annual incidence of human monocytic ehrlichiosis is low, but serosurveys suggest high infection rates in selected populations. Because children are often exposed to ticks, this study investigated the prevalence of antibody to E chaffeensis among children living in endemic regions of the United States.

Overall, 13% of the children had antibody titers of 1:80 or higher and 3% had titers of 1:160 or higher. Age-adjusted seroprevalence rates using the stringent cutoff value were as high as 9% in some areas. Infection with E chaffeensis may be more common in children than previously recognized.

Accepted for publication September 23, 2001.

From the Divisions of Pediatric Infectious Diseases, University of Louisville School of Medicine, Louisville, Ky (Dr Marshall); and the University of Arkansas for Medical Sciences, Little Rock (Drs Jacobs and Schutze); PanBio InDx, Inc, Baltimore, Md (Ms Paxton); the Divisions of Pediatric Infectious Diseases, University of Tennessee Health Sciences Center, Memphis (Drs Buchanan and DeVincenzo), the University of Missouri, Kansas City (Dr Jackson), and the University of Oklahoma Health Sciences Center, Oklahoma City (Dr San Joaquin); Department of Preventive Medicine, Vanderbilt University School of Medicine, Nashville, Tenn (Dr Standaert); and Division of Pediatric Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC (Dr Woods).

This study was supported by grant 97-44 from the Alliant Community Trust Fund, Louisville, Ky.

Corresponding author and reprints: Gary S. Marshall, MD, Division of Pediatric Infectious Diseases, University of Louisville School of Medicine, 571 S Floyd St, Suite 321, Louisville, KY 40202 (e-mail: gsmars01@athena.louisville.edu).

REFERENCES