Deep-Plane Face-lift as an Alternative in the Smoking Patient

Over the past 30 years, face-lift surgery has progressed from a more limited skin elevation with no treatment of the superficial muscular aponeurotic system (SMAS) to more extended elevation of the skin and SMAS. Hamra popularized the traditional deep-plane technique lifting the SMAS and skin as a compound unit with a thicker, well-vascularized flap. This flap is elevated in a sub-SMAS dissection in the inferior cheek and superiorly transitioning to a supra-SMAS plane just superficial to the zygomaticus muscles in the superior medial cheek.

The effects of nicotine on wound healing and flap viability have been associated with superficial skin necrosis and hematoma in the patient undergoing a face-lift. The risk of complications is increased with extensive subcutaneous face-lifts. There have been numerous studies examining the detrimental effects of smoking and wound healing (eg, Rees et al and Mosely and Finseth). The major effect of nicotine on wound healing is that it increases platelet adhesiveness and increases blood viscosity, leading to an increase in thrombotic microvascular occlusion and eventually tissue ischemia.

The survival of a face-lift flap depends on adequate blood supply and oxygenation. Most surgeons consider smoking a relative contraindication to performing any type of face-lift. To decrease the chance of skin necrosis, some have adjusted their techniques by performing more limited undermining of the skin. This compromises the degree of correction of facial laxity and long-term results. Smoking can double the chances of hematoma collection postoperatively. The purpose of our study is to show that a deep-plane face-lift with extensive undermining can be performed safely in smokers with limited postoperative complications.

Methods. We reviewed the medical records of 181 consecutive patients who had undergone a deep-plane face-lift from November 2008 to November 2010. The senior author (A.A.J.) was the primary surgeon for all patients. This factor minimized the variance in technique. The extent of subcutaneous undermining progressed anteriorly to the deep-plane entry point. A line that extends from the angle of the mandible to the lateral canthus marks this entry point. The subcutaneous flap and SMAS are dissected as 1 compound unit from this point anteriorly in a sub-SMAS plane in the inferior cheek and superi-
alter their technique in smokers by limiting the subcutaneous dissection pocket in order to decrease the chances of hematoma formation and skin slough. This compromises the degree of improvement in facial ptosis and longevity of results. We perform a deep-plane face-lift to achieve a superior result while minimizing complications.

In our study, the hematoma rate for smokers was 3 times the rate for nonsmokers (6.3% vs 1.8%, respectively). This is consistent with conventional wisdom that smoking increases the rate of hematoma during a face-lift. Rees et al4 showed that of all the patients who had skin slough in a sample size of 1186 patients, 80% admitted to smoking more than 1 ppd. According to this study, a patient undergoing a face-lift who smokes has a 7.5% chance of experiencing skin slough compared with a 2.7% chance in a patient who does not smoke.4 Another prospective study7 of 83 consecutive patients who underwent face-lift examined the dermal microvasculature of skin that was cut away during a face-lift. These data showed significantly greater nonreversible occlusive and degenerative vascular changes in the dermal microvasculature of smokers when compared with data for nonsmokers.

In our study, there was a low rate of skin slough compared with rates reported in previous studies. Skin slough rates were 0% and 1.3% for smokers and nonsmokers, respectively, compared with the study by Rees et al4 in which the rates were 7.5% and 2.7%, respectively. The low rate of skin slough in our study is likely due to the thickness of the flap in a deep-plane face-lift and the limited residual subcutaneous pocket at the conclusion of the procedure (Figure 2). Interestingly there were fewer skin sloughs in the smoking group, but this is likely due to the small sample size of smokers (16 patients).

Deep-plane face-lifting is safer in smokers because the blood supply to the deep-plane flap is less compromised when compared with other techniques of face-lifting. Schuster et al8 examined the vascular anatomy of the flap in 3 different rhytidectomy techniques. These 3 tech-

Figure 1. A 62-year-old woman (patient 3) who underwent deep-plane face-lift, upper blepharoplasty, and lower blepharoplasty with orbital fat transposition while continuing to smoke. Preoperative (A, B, C) and postoperative (D, E, F) views. The procedure duration was 4 hours. The patient was discharged 1 hour after surgery. Note significant upper neck submental laxity, bilateral platysmal banding, jowls, marionette grooves, and midface ptosis. Note better definition of the mandibular line. This patient developed a hematoma on postoperative day 1 requiring a return to the operating room. There was no evidence of skin necrosis postoperatively.
The deep-plane lift approach was developed following the introduction of the sub-SMAS lift. These two techniques were a separate subcutaneous and sub-SMAS dissection, a composite (deep-plane) rhytidectomy, and a subperiosteal face-lift. The results showed that the separate subcutaneous and sub-SMAS dissection interrupts the rich continuous anastomotic network between all these vessels. Arterial continuity is best maintained with the composite lift and the subperiosteal face-lift. The results showed that the separation of these vessels. Arterial continuity is best maintained with the composite lift and the subperiosteal face-lift.8 The most significant arterial contribution of the face-lift flap is from the rich continuous anastomotic network between all these vessels. Arterial continuity is best maintained with the composite lift and the subperiosteal face-lift.8 The most significant arterial contribution of the face-lift flap is from the transverse facial artery perforator. This perforator has a constant anatomic location at 3.1-cm lateral and 3.7-cm inferior to the lateral canthus. This vessel is not disturbed in a deep-plane face-lift.10

Sachin S. Parikh, MD
Andrew A. Jacono, MD

Author Affiliations: The New York Center for Facial Plastic and Laser Surgery, Great Neck, New York (Drs Parikh and Jacono); Division of Facial Plastic and Reconstructive Surgery, North Shore University Hospital, Long Island Jewish Medical Center, New Hyde Park, New York (Drs Parikh and Jacono); and Departments of Otolaryngology–Head and Neck Surgery, Division of Facial Plastic and Reconstructive Surgery, The New York Eye and Ear Infirmary and Albert Einstein College of Medicine, New York (Dr Jacono).

Correspondence: Dr Jacono, The New York Center for Facial Plastic and Laser Surgery, 440 Northern Blvd, Great Neck, NY 11021 (drjacono@gmail.com).

Author Contributions: Study concept and design: Parikh and Jacono. Acquisition of data: Parikh and Jacono. Analysis and interpretation of data: Parikh and Jacono. Drafting of the manuscript: Parikh and Jacono. Critical revision of the manuscript for important intellectual content: Parikh. Statistical analysis: Parikh and Jacono. Administrative, technical, and material support: Parikh and Jacono. Study supervision: Jacono.

Financial Disclosure: None reported.

The C-Ring Complex: Defining the Parameters of Nasal Tip Anatomy

The human nose arises from the frontonasal prominence during the 4th to 10th weeks of gestation. Migration of neural crest cells into these soft tissues gives rise to the olfactory placodes. Invagination of the central placode epithelium within the proliferating mesenchymal tissue allows for the development of the nasal pits and the medial and lateral nasal prominences. In time, these prominences fuse to form the associated soft, muscular, and cartilaginous tissues of the paired external nares. The lateral prominence gives rise to the lateral nasal wall and ala while the medial prominence develops into the nasal septum, columella, and nasal tip. Each of the lower nasal cartilages is formed within a C-shaped fusion of these embryonic prominences.

Considerable attention has been given to the architecture and surgical management of the lower lateral cartilages. The current medical literature is replete with discussions involving nasal tip rotation, projection, and soft-tissue alteration and refinement. Unfortunately, there is limited integration of nasal embryology and anatomic studies involving the tissues of the nasal base. In our surgical experience we have noted significant, posterior extensions of the lateral crus of the lower lateral nasal cartilages that may be of considerable importance in the treatment of the nasal base.