Alternative 1-Step Nasal Reconstruction Technique

Kazuo Kishi, MD, PhD; Nobuaki Imanishi, MD, PhD; Yusuke Shimizu, MD; Ruka Shimizu, MD, PhD; Keisuke Okabe, MD; Hideo Nakajima, MD, PhD

Objectives: To describe a 1-step nasal reconstruction technique for use in lieu of a paramedian forehead flap that is usually raised at the location of the supratrochlear artery.

Methods: Using angiography in 10 fresh cadavers, we confirmed the arterial anatomy of the nasal and forehead regions to refine the paramedian forehead flap. Based on the anatomical data, we performed nasal reconstruction in 9 patients who had a full-thickness defect of the nasal ala or who needed alar base reconstruction with an island paramedian forehead flap based on the angular artery.

Results: From the anatomical study, we confirmed a rich network among the supratrochlear, dorsonasal, and angular arteries around the medial canthus. In the clinical cases, the subcutaneous pedicle was tunneled beneath the skin, without conspicuous bulkiness. For all patients, the operation was completed in 1 stage, and the flaps healed without evidence of necrosis.

Conclusions: By moving the pedicle downward, a full-thickness nasal defect can be reconstructed in 1 stage that includes the alar lining or alar base with the paramedian forehead flap. This avoids restriction of the rotation arc, particularly when the alar lining or alar base is also needed for reconstruction.

Arch Facial Plast Surg. 2012;14(2):116-121

Methods

Anatomical Study

Ten fresh cadavers were systemically injected with a lead oxide–gelatin mixture as previously described. The soft tissues were then elevated on the periosteum, and a radiograph was obtained to confirm the arterial anatomy of the mid to upper face.

Patients

Six patients underwent nasal reconstruction using the island paramedian forehead flap based on the angular artery. These patients had defects due to basal cell carcinoma (n=5) and scar contracture (n=1). The patients ranged in age from 54 to 73 years and comprised 4 women and 2 men. None were heavy smokers or had other risk factors for impaired wound healing. Because of defects after resection of the tumor, a local flap on the cheek was also performed in 4 patients. Patient characteristics are listed in the Table.

Surgical Procedure

Before the operation, the angular and supratrochlear arteries were identified by Doppler ultrasonography. Using general anesthesia, the paramedian forehead flap was designed according to the shape and span of the tissue.
needed. Dissection was begun at the distal end of the flap. The flap was raised from the peripheral area, including the galea over the peristium, and thinning was performed. Around the subcutaneous pedicled area, the skin overlaying the subcutaneous pedicle was dissected subcutaneously, including the corrugator supercilii muscle. After elevating the flap, the excess galea and forehead muscle in the peripheral area were removed if needed. Because the supratrochlear artery runs just beneath the dermis approximately 1 cm above the eyebrow, care was taken not to disturb this artery when making the subcutaneous pedicle. To prevent disturbing the supratrochlear artery, the flap was elevated to the brow, and the excess skin covering the pedicle was then excised.

After reaching the eyebrow, the dissection was deepened to include the corrugator supercilii muscle. The supratrochlear artery was transected intraorbitally for several millimeters to keep the arterial network intact, and the pedicle was dissected caudally. The dissection was halted when the flap reached the defect without tension. The skin portion of the flap was moved through the skin tunnel. Depending on the size of the skin defect (left by the removal of the flap), another local flap was added if needed. All areas were sutured primarily.

RESULTS

From the anatomical study in 10 cadavers, we confirmed that the angular artery has a rich network with the supratrochlear artery around the medial canthus, where the angular artery also gives rise to a rich network that leads to the dorsonasal artery (Figure 1). From these anatomical findings, it was postulated that a paramedian forehead flap could be raised by ligating and separating the supratrochlear artery where it anastomoses with the forehead flap could be raised by ligating and separating the supratrochlear artery. An angular artery–pedicled island paramedian forehead flap, 1.5 × 9.0 cm with a 1.0 × 4.0-cm skin portion, was designed. The flap was elevated and made into an island by removing the surrounding skin. The tip of the flap was thinned and used as the alar lining and alar base. The upper lip was reconstructed with an advancement V-Y flap from the left cheek. The donor sites of each flap were sutured. The flap healed well, and the alar contour was well preserved at 9 months after the operation (Figure 3).

CASE 2

A 73-year-old woman had a basal cell carcinoma on her right alar and had undergone resection at an outside institution 1 year previously. Her right ala was tight, and she wanted to restore the natural contour. By comparing the left ala, reconstruction of two-thirds of the total nasal rim was necessary. An angular artery–pedicled island paramedian forehead flap, 1.5 × 9.0 cm with an attached 1.5 × 5.0-cm skin portion, was designed. The supratrochlear artery was ligated and separated at the base, and the flap was transposed to the right alar. The donor site was sutured. The tip of the flap was thinned and used for the alar lining, and the length of the flap was sufficient to cover the entire area. The flap healed well without necrosis. Six months after the operation, the contour of the ala was satisfactory, although the volume of the cheek was somewhat bulky because of the pedicle (Figure 4).

CASE 3

A 68-year-old man had a basal cell carcinoma on his left cheek, and wide resection had resulted in a 6.0 × 6.0-cm skin defect. An angular artery–pedicled island paramedian forehead flap with a 6.0 × 4.0-cm skin portion was designed, which covered the skin defect of the cheek. The tip of the flap was thinned and used for the alar lining. The lower one-third of the skin defect was covered with a rhomboid flap designed on the left cheek. The flap healed well without necrosis. Twelve months after the operation, the contour was satisfactory (Figure 5).

Table. Characteristics of the Patients and Angular Artery–Based Island Paramedian Forehead Flap Results

<table>
<thead>
<tr>
<th>Case No./ Sex/Age, y</th>
<th>Lesion Location</th>
<th>Indication</th>
<th>Skin Defect, cm</th>
<th>Flap Size, cm²</th>
<th>Additional Flap</th>
<th>Cosmetic Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/73</td>
<td>Left ala, alar base</td>
<td>BCC</td>
<td>2.5 × 2.0</td>
<td>1.5 × 9.0</td>
<td>Cheek V-Y</td>
<td>Excellent</td>
</tr>
<tr>
<td>2/F/73</td>
<td>Right ala</td>
<td>BCC</td>
<td>1.0 × 3.0</td>
<td>1.5 × 9.0</td>
<td>None</td>
<td>Excellent</td>
</tr>
<tr>
<td>3/M/68</td>
<td>Left ala, cheek</td>
<td>BCC</td>
<td>6.0 × 6.0</td>
<td>3.0 × 9.0</td>
<td>Cheek Limberg</td>
<td>Good</td>
</tr>
<tr>
<td>4/F/56</td>
<td>Left ala, alar base</td>
<td>BCC</td>
<td>3.0 × 2.0</td>
<td>1.5 × 8.0</td>
<td>Cheek Limberg</td>
<td>Fair</td>
</tr>
<tr>
<td>5/F/54</td>
<td>Right ala</td>
<td>Scar contracture</td>
<td>1.5 × 4.0</td>
<td>1.5 × 8.0</td>
<td>Nasolabial V-Y</td>
<td>Excellent</td>
</tr>
<tr>
<td>6/F/62</td>
<td>Left cheek</td>
<td>BCC</td>
<td>6.0 × 4.0</td>
<td>3.0 × 8.0</td>
<td>None</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Abbreviation: BCC, basal cell carcinoma.

a Maximum width by length.
COMMENT

For 1-stage nasal reconstruction, an interpolated melolabial flap is frequently used. Although a melolabial flap is an easy and excellent method of nasal reconstruction, the outcome may not be satisfactory because the original texture of the nose resembles more that of the forehead region than the cheek region. Therefore, we present herein an alternative method for 1-stage nasal reconstruction.

Various and detailed anatomical studies describing the refinement of the paramedian forehead flap have been published. Although the main pedicle of the paramedian forehead flap is the supratrochlear artery, studies have indicated that the paramedian forehead flap can be raised based on the angular artery. Using angiography in fresh cadavers, we observed findings similar to those reported, demonstrating that the supratrochlear, dorsonasal, and angular arteries participate in a rich network around the medial canthus. There is variation in the branching pattern of the angular artery. Kleintjes reported the results of a study using 30 cadavers and found in 60 hemiforeheads that 96% of angular arteries have communicating branches with the dorsonasal artery and 67% with the supratrochlear artery. Besides the direct connection of these arteries as examined by latex injection,
there seems to be a rich network among the supratrochlear, dorsonasal, and angular arteries.4,6,8 Therefore, as long as the supratrochlear artery and peripheral angular artery are included in the pedicle, an angular artery-based paramedian forehead flap can be raised safely. Even if direct communication between the supratrochlear artery and angular artery does not exist, the subcutaneous arterial network around the medial canthus is rich. Therefore, by keeping the tissue between the subcutaneous pedicle and periosteum intact, a rich blood supply can reach the flap. We maintain at least 1.0-cm width intact to accomplish this.

Kelly et al5 reported findings of a cadaver injection study and a clinically representative case demonstrating supratrochlear and facial artery networks. Our anatomical investigations indicated the possibility of raising the island paramedian forehead flap based on the angular artery. However, no detailed clinical applications had been reported to date. In our patients, we transected the supratrochlear artery deep into the orbit to keep the bifurcation of the artery intact, which may increase the blood supply to the flap. We are uncertain as to the necessity of this step, but our anatomical study showed that the main anastomosis of the supratrochlear artery and the angular artery sometimes occurs in the orbital area.

From our clinical cases, it was found that the pedicle could be moved at least 1.5 cm downward from the medial canthus by dissecting the supratrochlear artery. Following this step, reconstruction of the alar lining or alar base was possible.

We also created the island paramedian forehead flap in our patients. The island paramedian forehead flap was reported in 1963 by Converse and Wood-Smith.9 Our approach to constructing the flap island was based on our detailed arterial anatomical study of the supratrochlear artery, which runs just beneath the dermis in the upper frontal region and traverses beneath the corrugator supercili muscle. Therefore, if the supratrochlear artery is not disrupted in the distal part of the flap, the paramedian forehead flap can safely be subcutaneously pedicled. Our clinical cases showed that, even if it is necessary to construct an island paramedian forehead flap, the angular artery–pedicled paramedian forehead flap can be raised safely. Although the volume becomes slightly bulky where...
the subcutaneously pedicled area runs beneath tunneled skin, the bulkiness becomes negligible several months after the operation. When the pedicle is designed on the contralateral side, the dog-ear around the pedicle becomes flattened and more natural.

As for the alar lining, various methods of reconstruction have been reported. These include a septal mucosal flap,10 nasolabial turnover flap,11 musculomucosal flap,7 and free grafting of the hard palate12 or ear.13 Using the paramedian forehead flap as a lining has merit in that the arteries nourishing the forehead run just beneath the dermis in the peripheral area of the flap; therefore, thinning can be performed safely. Especially for patients in whom the whole alar needs to be reconstructed, a thinned flap for the alar lining makes an ideal base for the rim reconstruction.
Accepted for Publication: November 1, 2011.
Correspondence: Kazuo Kishi, MD, PhD, Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjukuku, Tokyo 160-8582, Japan (kkishi@sc.itc.keio.ac.jp).

Financial Disclosure: None reported.

Previous Presentation: This study was presented in part at the American Society of Plastic Surgeons 2010 Aesthetic Facial Reconstruction in Adults and Children Symposium; February 19, 2010; Tucson, Arizona.

REFERENCES

