Margin Reflex Distance in Different Ethnic Groups

Ann P. Murchison, MD; Bryan A. Sires, MD, PhD; Arash Jian-Amadi, MD

Objective: To determine the normal range for eyelid margin reflex distance (MRD) in adults according to their ethnicity, age, and sex.

Methods: A prospective study of eyelid measurements in 112 consecutive adult African American, Asian, white, and Latino patients was compared using t test analysis. Measurements of MRD were collected by a single examiner across 5 months. Patients with conditions disposing to eyelid height changes were excluded.

Results: The MRD showed statistically significant variance among select ethnic groups. There was no statistical significance between sexes within each ethnic group.

Conclusions: Variance in MRD exists among ethnic groups. This information and further data on ethnicity and sex variance of eyelid measurements can be used for both diagnostic purposes and surgical treatment of patients for optimal results.

Arch Facial Plast Surg. 2009;10(5):303-305

Facial Measurements are used in a variety of medical and surgical fields to diagnose and treat patients. Diagnosis of congenital malformations, metabolic diseases, aging changes, and trauma can all be made in part by knowledge of deviations from normal facial measurements. Surgical treatment of any of these problems clearly relies not only on anatomical knowledge but also on an understanding of the normal measurements for the patient based on their age, sex, ethnicity, and preferences. In the area of facial and plastic surgery, functional and aesthetically pleasing results rely on these fundamentals.

Data on a variety of facial measurements in adults and children have been published, although little information exists on eyelid measurements. Other publications include ethnicity in their analysis of facial measurements, but few studies include margin reflex distance (MRD). The MRD is the distance in millimeters from the corneal light reflex to the central upper eyelid margin with the patient in primary gaze. All MRD measurements were taken by a single examiner (A.P.M.) and recorded to the nearest 0.5 mm. All measurements were taken 3 times, and the mean of the 3 measurements was recorded. Exclusion criteria included thyroid eye disease, history of eye or eyelid surgery, history of trauma, contact lens wear, myasthenia gravis, Horner syndrome, congenital craniofacial anomalies, or use of dilating eyedrops, and 10 patients were excluded for these reasons. Ethnicity was determined by the patients' stated ethnic background.

Statistical analysis was performed using a 2-tailed t test and linear regressions with the use of Stata statistical software (StataCorp, College Station, Texas).

The patients consisted of 50 women (49.0%) and 52 men (51.0%). The largest ethnic group was African American (41 patients [40.29%]), followed by white (27 [26.5%]), Asian (21 [20.6%]), and Latino (13 [12.7%]). The mean (SD) patient age was 50.6 (14.9) years, and patient ages were similar across ethnic groups (Table 1). The standard deviation of interpatient MRD measurements was 0.05; the mean of the measurements for each patient was reported. White patients had the highest mean MRD (5.1 mm) and Asians had the lowest [3.8 mm] (Table 1). We created histograms and box plots of MRD according to ethnicity (Figure 1 and Figure 2, respectively). The histograms show ethnic differences in MRD, particularly between whites and Asians, and we found substantial variability in MRD.
within each ethnic group (Figure 1). We draw the same conclusions from the box plots. However, within each ethnicity, sex did not make a significant difference in MRD (Figure 2).

Multiple linear regressions were performed (MRD = \(\beta_0 + \beta_1 \text{female} + \beta_2 \text{African American} + \beta_3 \text{Latino} + \beta_4 \text{Asian} + \beta_5 \text{age} + \varepsilon \)), with white male as the baseline group and having a confidence interval not containing 0. Using this model, we found significant differences in MRD among ethnic groups (Table 2). African Americans, Latinos, and Asians were expected to have lower MRDs than are whites of the same sex and age. However, no significant differences in MRD were found between African Americans and Latinos or between Latinos and Asians. Once again, sex was not found to be a predictor of MRD, although we found that more than 20% of the variability in MRD can be explained by ethnicity and age.

Abnormalities of the upper eyelid position are found in a variety of medical, traumatic, and age-related etiologies. The knowledge of normal eyelid measurements is crucial to the diagnosis and treatment of eyelid position abnormalities. Age is known to affect some eyelid measurements, but it is unknown whether any variation is based on ethnicity. Ethnic and sex differences are reported in some eyelid and facial measurements; however, to our knowledge, there are no published data on the variation of MRD. The data collected in this study suggest that ethnicity affects MRD. This is most apparent when comparing whites with Asians. On average, Asians have an MRD that is 1.3 mm less than that in whites. However, we should note that significant variability exists within each ethnic group (Figure 1).

Without knowledge of normal eyelid position measurements it is not possible to evaluate normal vs abnormal eyelid position. Because trauma or metabolic abnormalities can change eyelid position in any patient group, it is important to know the normal position for each patient to achieve the best and most aesthetically pleasing result. The determination of what constitutes the normal position of the eyelid should be individualized to each patient, taking into account not only ethnicity, age, and sex but also other ophthalmic findings, patient expectations, and patient appearance in old photographs.

Aesthetics and physicians have long used the neoclassical facial canons developed by artists during the Renaissance. These rules of facial proportion were the initial guides for surgeons and the ideal to which many people aspired. In more recent years, various craniofacial measurements have been studied and found to vary among different ethnic groups. Facial beauty is still difficult to define, but facial asymmetry and disfigurement have a negative psychosocial effect on patients. Graves disease with ocular involvement is known to decrease a patient’s quality of life and to cause some patients to appear disfigured. An objective and systematic method of evaluation for diagnosis and of preoperative evaluation for patients specific to their sex, age, and ethnicity, when combined with the usual evaluations in an individualized approach, can achieve an optimal aesthetic outcome and potentially improve patient quality of life.

Table 1. Patient Characteristics and Margin Reflex Distance (MRD) by Ethnicity

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>White (n=27)</th>
<th>African American (n=41)</th>
<th>Latino (n=13)</th>
<th>Asian (n=21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, %</td>
<td>67</td>
<td>44</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
<td>50.0 (16.2)</td>
<td>50.7 (13.5)</td>
<td>49.2 (17.0)</td>
<td>52.1 (15.7)</td>
</tr>
<tr>
<td>MRD, mean (SD), mm</td>
<td>5.1 (0.8)</td>
<td>4.5 (1.1)</td>
<td>4.4 (0.9)</td>
<td>3.8 (1.1)</td>
</tr>
</tbody>
</table>

Figure 1. Distribution of margin reflex distance (MRD) within ethnic groups. Along each x-axis, “x” indicates the mean MRD.
heights occurring between 10 AM and 10 PM. There are con-
fissure heights are reported to have acrophases, with peak
time of day measurements were taken because palpebral
measurements. Palpebral fissure height measurements could have been altered by the
white eyelids, for example, significant variation in ethnic back-
ground exists, which can influence body and facial mea-
tried with patients with shallow orbits or deep-
teristic age. Finally, we had small sample sizes for each eth-
position varied for patients with shallow orbits or deep-
while assessing therapeutic options for patients.

Figure 2. Box and whisker plots of margin reflex distance (MRD) showing
the distribution of data by sex within ethnic groups. Boxes show the
interquartile range; dark lines, median values. Whiskers include values within
1.5 box lengths, and circles represent outliers. M indicates male; F, female.

Table 2. Parameter Estimatesa

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate (SE)</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.76 (0.38)</td>
<td>5.02 to 6.49</td>
</tr>
<tr>
<td>Female</td>
<td>0.15 (0.19)</td>
<td>-0.23 to 0.53</td>
</tr>
<tr>
<td>African American</td>
<td>-0.59 (0.24)</td>
<td>-1.06 to -0.12</td>
</tr>
<tr>
<td>Latino</td>
<td>-0.74 (0.32)</td>
<td>-1.37 to -0.11</td>
</tr>
<tr>
<td>Asian</td>
<td>-1.29 (0.28)</td>
<td>-1.84 to -0.74</td>
</tr>
<tr>
<td>Age</td>
<td>-0.01 (0.01)</td>
<td>-0.03 to 0.00</td>
</tr>
</tbody>
</table>

a For the multivariate analysis, $R^2 = 0.22$.

have occurred if there was any deviation of the patient’s
eyes to the left or right in the horizontal plane, artificially
increasing fissure height measurements. Palpebral fis-
sure height measurements could have been altered by the
time of day measurements were taken because palpebral
fissure heights are reported to have acrophases, with peak
heights occurring between 10 AM and 10 PM. There are con-
tradicory data concerning the influence of environment
on anthropometric measurements, including the influence
within an ethnic group. In addition, we took no mea-
surements of globe position to determine whether eyelid
position varied for patients with shallow orbits or deep-
set eyes. Finally, we had small sample sizes for each eth-
nic group studied, and the ethnic groups were broadly
generalized and may differ within subpopulations. Among
whites, for example, significant variation in ethnic back-
ground exists, which can influence body and facial mea-

Although our study did not have large sample sizes or
cover the spectrum of ethnicities, it suggests that vari-
ability in MRD measurements will be found across eth-
nic groups. The coefficients (Table 2) can be used to pre-
dict MRD for a new patient with known ethnicity. A study
that includes more patients, greater ethnic diversity, and
specific subgroups of Asian populations would give add-
tional information on any potential variations in MRD
measurements, which could be helpful when individu-
alizing therapeutic options for patients.

Accepted for Publication: November 2, 2008.
Correspondence: Ann P. Murchison, MD, Department of Ophthalmology, Emory University School of Medi-
cine, 1365 B Clifton Rd NE, Atlanta, GA 30322 (apmurch
@emory.edu).

Author Contributions: Study concept and design: Sires and
Jian-Amadi. Acquisition of data: Murchison. Analysis and
interpretation of data: Murchison and Jian-Amadi. Draft-
ing of the manuscript: Murchison. Critical revision of the
manuscript for important intellectual content: Murchison,
Sires, and Jian-Amadi. Statistical analysis: Murchison. Ad-
ministrative, technical, and material support: Sires. Study
supervision: Sires and Jian-Amadi.

Financial Disclosure: None reported.

REFERENCES

1. Lam BL, Lam S, Walls RC. Prevalence of palpebral fissure asymmetry in white
2. Loving RT, Kripke DF, Glazner LK. Circadian rhythms in the human pupil and eyelid.
3. Carterwright MJ, Kurumety UR, Nelson CC, Frueh BR, Musch DC. Measurements of
upper eyelid and eyebrow dimensions in healthy white individuals. Am J
4. Kunjur J, Sabesan T, Ilandovan V. Anthropometric analysis of eyebrows and eye-
5. Farkas LG. Accuracy of anthropometric measurements: past, present, and future.
6. Le TT, Farkas LG, Ngim RC, Levin LS, Forrest CR. Proportionality in Asian and
North American Caucasian faces using neoclassical facial canons as criteria. Aes-
7. Barretto RL, Mathog RH. Orbital measurement in black and white populations.
9. Clarke A. Psychosocial aspects of facial disfigurement: problems, management
and the role of a lay-led organization. Psychol Health Med. 1999;4(2):127-
142.
10. Gerding MN, Tervee CB, Dekker FW, Prummel MF, Wiersina WM. Quality of life
in patients with Graves’ ophthalmopathy is markedly decreased: measurement
by the medical outcome study instrument. Thyroid. 1997;7(6):885-889.
11. Tervee CB, Dekker FW, Bonsel GJ, et al. Facial disfigurement: is it in the eye of
12. Boboridis K, Assi A, Indar A, Bunce C, Tyers AG. Repeatability and reproducibil-
13. Hajnis K, Farkas LG, Ngim RCK, Lee ST, Venkatadri G. Racial and ethnic mor-
phometric differences in the craniofacial complex. In: Farkas LG, ed. Anthro-
pometry of the Head and Face. 2nd ed. New York, NY: Raven Press; 1994:201-
218.